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Trinocular 360-degree stereo for accurate all-round 3D reconstruction
considering uncertainty
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ABSTRACT
This research proposes amethod for accurate all-round 3D reconstruction of an indoor environment
in one-shot using a system of trinocular 360-degree cameras. Binocular 360-degree stereo is unable
to reconstruct in all directions due to lack of disparity along epipolar directions. Thus, a third camera
along aperpendicular epipolar direction is introduced to cover for this,making the system trinocular.
However, previousworkswith trinocular stereo did not adequately take into account the uncertainty
of disparity estimation and geometric constraints around 3D reconstruction. Therefore, we propose
a geometric optimization scheme considering disparity estimation uncertainty and show that this
results in both higher accuracy and lesser outliers along epipolar directions, in both simulated and
real environments.
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1. Introduction

Cameras are integral sensors for robotic systems. One of
the main tasks they are used for is 3D reconstruction of
environments. Obtaining a full color 3D reconstruction
of an environment is important for disaster response, dig-
itization, measurement, and inspection. Binocular stereo
vision is a common technique for camera-based 3D
reconstruction. As opposed to Structure from Motion
(SfM) [1], camera positions are known in binocular
stereo allowing for denser, more accurate reconstruction
in a single capture from both cameras. However, in
order to capture the environment in all directions, it is
necessary to move the binocular stereo camera around
the environment and fuse multiple 3D reconstructions
together. This requires capture time, and the fusion is
not always accurate. In contrast, 360-degree cameras can
capture all direction in a single shot. Accordingly, it is
expected that binocular 360-degree stereo [2] should be
able to achieve an all-round 3D reconstruction. However,
this is not possible because 3D reconstruction requires
disparity i.e. a difference in position of corresponding
pixels. As we approach the epipolar direction, i.e. the
direction joining both cameras, the disparity approaches
zero. Due to this, reconstruction around the epipolar
directions is impossible. Moreover, close to the epipo-
lar directions, the uncertainty of disparity estimation
becomes quite large as compared to the disparity, lead-
ing to a loss of accuracy. As shown below in Figure 1, each
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pixel has an uncertainty in disparity estimation. (For sim-
plicity, the figure shows equal uncertainty for all pixels.)
This uncertainty translates to uncertainty of the 3D point
positionwhen reconstructed in space. The area inside the
parallelogram represents the possible locations of the 3D
point. As can be seen, this area increases greatly as the
epipolar direction is approached, making 3D reconstruc-
tion difficult, leading to outlier points. Thus, binocular
360-degree vision cannot achieve all-round 3D recon-
struction.

To deal with this problem, [3] introduced the concept
of adding an additional camera at a direction perpen-
dicular to the epipolar direction, making an L-shaped
arrangement. The additional camera can provide a new
epipolar direction that can cover for the lack of accuracy
from the original. Basically, this system forms two binoc-
ular 360-degree stereo systems that are perpendicular to
each other. They show that the binocular reconstruc-
tion results in huge distortions in the epipolar direction
and their trinocular approach solves this to an extent.
However, this approach did not attempt proper informa-
tion fusion from both. They attempted a simple weighted
average of both directions. In case the distortion fromone
direction is too high, it can show up in the final result.
This approach did not attempt to preserve the geomet-
ric constraint that each reconstructed point occupies only
one position in 3D space and must be projected consis-
tently in all cameras, i.e. the position of the reconstructed
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Figure 1. 3D reconstruction uncertainty in binocular 360-degree
stereo vision. The camera shown in the figure is the Ricoh Theta.
360-degree images can be represented as unit spheres, as shown
in the figure.

point on each image should match the pixel. Yin et al.
[4] improved this result by minimizing the error of each
3D point across all images. However, the uncertainty of
disparity estimation was not taken into account. More-
over, they were unable to achieve reconstruction in real
environments.

The reason for the lack of accuracy in previous meth-
ods is that disparity uncertainty is difficult to calcu-
late because the distortion present in 360-degree images
makes it so that corresponding pixels lie on com-
plex epipolar curves. Typical stereo disparity estimation
methods [5] employ a tactic known as stereo rectification,
in which all corresponding pixels are brought to the same
horizontal image coordinate, greatly reducing the prob-
lem. Disparity uncertainty can then be estimated across
the same horizontal coordinate. However, this does not
work for 360-degree images, which are distorted and
do not have epipolar lines. They have epipolar curves,
instead, as shown Figure 2.

In this paper, wemaximize reconstruction accuracy by
taking disparity uncertainty into account via geometric
optimization. We calculate uncertainty based on a rec-
tification of 360-degree images in the vertical direction,

Figure 2. Epipolar lines in 360-degree images are shown on the
left in spherical projection (unit sphere projection). On expand-
ing these to equirectangular images, they take on a complicated
shape making disparity estimation difficult.

that makes it easy to calculate the disparity uncertainty.
We show that this results in higher accuracy as well as
low distortion along the epipolar directions, minimiz-
ing the number of erroneously reconstructed ‘outlier’
points. In the next section, we discuss closely related
literature. After that, we explain the concept of the pro-
posed geometric optimization, diving disparity uncer-
tainty. Following that, we show experimental evaluation,
both qualitative and quantitative, in real and rendered
environments. Finally, we conclude the paper and talk
about future work.

2. Related work

All-round 3D reconstruction, especially for indoor envi-
ronments, has been paid attention in literature in several
ways. Most common methods involve using an active
sensor, such as an RGB-D camera and moving it around
the environment, scanning each part [6, 7]. However,
such methods require alignment of various 3D scans
which can induce drift errors in the final measurement.
They also require time to capture the entire environment
and are not suitable for real-time operation. The Velo-
dyne LiDAR and other 360-degree LiDARs can provide
real-time all-round 3D data. However, they lack color
information. This has been solved by methods such as
[8], which combine 360-degree cameras and 360-degree
LiDARs. This forms a good solution, but is quite expen-
sive and power hungry. Moreover, the LiDAR cannot
provide the same high-density as a camera can. Other
sensors like the FARO Focus [9] can provide dense mea-
surements and color information, leading to successful
use in infrastructure inspection and other practical appli-
cations. The sensor rig rotates around a single point,
leading to minimal error in registering different scans.
However, this is prohibitively expensive and also takes
time to scan the entire structure. As opposed to all these
sensors, using a pure camera based solution is attractive.

As opposed to regular perspective cameras, 360-
degree cameras that can capture all-round RGB informa-
tion in a single shot are suitable for this.

3D reconstruction using 360-degree cameras has been
tackled in previous research. Most recent approaches
such as Pano3D [10] use deep learning-based solutions
for single-view 3D reconstruction. However, learning-
based methods are not geometric in nature, whichmakes
it difficult to preserve the shape, detail, and geometric
scale of the environment. Thus, we choose to focus on
geometric methods in this research.

As mentioned earlier, [2, 11] used binocular 360-
degree stereo systems for 3D reconstruction. However,
they are only applicable to two 360-degree cameras in
a binocular stereo arrangement. Due to the uncertainty
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difference based on angle as shown in Figure 2, 3D
points located in the epipolar directions cannot be recon-
structed. Moreover, [2] uses two cameras displaced in
the vertical direction. Their method assumes vertical dis-
placement. In comparison, our proposed method can be
implemented with any camera arrangement via the use
of the vertically rectified orientation. Since 360-degree
images can be rotated to any orientation, there is no
limitation on the arrangement of cameras.

Yin et al. [4] and Li [3] are applicable to three cam-
eras and attempt to reconstruct in the epipolar direc-
tions as well. They assume that the estimated disparity
is correct and do not consider the uncertainties in the
epipolar directions. However, it is important to consider
these uncertainties as both epipolar directions in a three
camera setup are different and lead to different uncertain-
ties of estimation. As a result, [3] did not achieve accu-
rate reconstruction and [4] was unable to achieve per-
formance in real environments. Our proposed method
considers the uncertainties in both epipolar directions
individually by use of vertical rectification.

These prior studies revealed that properly considering
uncertainty is critical in fusing the information obtained
from all three 360-degree cameras. As mentioned, typ-
ical stereo estimation methods for perspective cameras
such as [5] are able to estimate disparity uncertainty
along epipolar lines. However, this does not work for
360-degree images which have distorted epipolar curves,
as shown Figure 2. When expanded to the equirectan-
gular projection, which is commonly used to process
360-degree images, the curves take a complicated shape
that makes disparity estimation difficult.

To address this issue, this paper proposes calculat-
ing uncertainty on a rectified vertical alignment of 360-
degree image pairs, followed by an uncertainty based
geometric optimization technique. Experimental results
show superior accuracy and lower outliers in the epipolar
directions. We also achieve accurate all-round 3D recon-
struction in a cluttered, real environment, showing the
superiority of our proposed approach.

3. Geometric optimization considering
uncertainty

3.1. Setup and system overview

Our proposed method uses the same camera setup as
[3]. This setup consists of three 360-degree cameras in
an L-shaped arrangement as shown in Figure 3. There
is no limitation on the orientations and positions of the
cameras in our method as long as both epipolar direc-
tions are approximately perpendicular to each other. The
proposed vertical rectification scheme can deal with any

Figure 3. Our setup use three cameras in an L-shaped arrange-
ment to form a trinocular system.

arrangement of cameras. Camera C is the central camera
and is taken to be the origin of the coordinate system. The
upper camera is Camera U and the camera on the right
is referred to as Camera R. The distances between Cam-
eras C and R is the same as the distance between Cam-
era C and Camera U, i.e. they have equal baseline. The
baseline can be adjusted depending on the target envi-
ronment. All relative camera positions are assumed to be
known/calibrated. The system is, essentially, a fusion of
two binocular 360-degree stereo systems using Cameras
C and R, and U and C.

The 3D reconstruction process proceeds as follows.

(1) First, all cameras capture the environment simulta-
neously.

(2) All images are rectified based in a vertical alignment,
based on the known camera positions. This makes
disparity and uncertainty calculation possible.

(3) Initial disparitymaps betweenCamera pairC andR,
and camera pair U and C are calculated.

(4) For each point in the image captured by Camera
C, distances dcu and duc are triangulated using the
principle of binocular stereo [2] between C and R,
U and C, respectively. Even though the same pixel
in CameraC is triangulated in both cases, the dis-
tances will not be equal due to the effects of pixel and
disparity uncertainty, and noise.

(5) Disparity uncertainty for each pixel is calculated
(6) The distance of each pixel in the image captured

by Camera C is optimized based on the calculated
uncertainty. The geometric constraint that each pixel
in Camera C can only occupy one position in 3D
space is applied and optimized. The initial guess for
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the optimization is calculated as the average of the
distances dcr and duc.

The next few subsections will explain all the points in
detail. (5) and (6) form the heart of our proposedmethod.

3.2. Image capture

Image capture is the first step of our proposed method.
All cameras, C, U, and R capture images simultaneously
(We use the same notations C, U, and R interchangably
for ‘Cameras’ and ‘Images’.). All camera positions are
known or calibrated beforehand. It is important to ensure
that all cameras capture under the same conditions. In
real environments, each camera will also end up captur-
ing the camera rig as well as other cameras. Since the
camera positions are known, these areas are constant in
all images and can bemasked out beforehand. The output
images are three equirectangular images in a 2:1 aspect
ratio. Since most 360-degree cameras consist of two
oppositely faced fisheye lenses, some may give the raw
fisheye images as output. These images can be calibrated
and fused to give full 360-degree images using [12].

3.3. Vertical rectification and disparity estimation

The next step in our proposed method is initial dispar-
ity estimation between C and R, and C and U. This
disparity estimation provides an initial anchor value for
the geometric optimization based on uncertainty. Typical
stereo disparity estimation for perspective stereo cameras

is done after stereo rectification i.e. making all the epipo-
lar lines parallel to each other. However, as mentioned
earlier and as shown in Figure 2, epipolar lines in 360-
degree equirectangular images are not straight lines, but
curves. However, in a special case, if two camera are dis-
placed vertically, the epipolar lines are aligned from top
to bottom and become perfectly vertical. This concept
was used by Kim and Hilton [11] where they mechan-
ically aligned two 360-degree cameras to be vertically
displaced.However, this is not always possible in practice.
Even if one of the cameras optical axes are slightly tilted, it
can induce a large error in this alignment. Instead, we use
the principle that 360-degree images contain informa-
tion from all directions and can be rotated freely. Based
on known camera positions and orientations, rotations
can be devised in order to convert any arrangement of
cameras to a vertically displaced arrangement by rota-
tion. Earlier, this rectification was applied to binocular
3D reconstruction in [13]. Essentially, the rectification
proceeds as follows:

(1) Initially, both cameras are displaced in a known
arbitrary direction and have known arbitrary rota-
tion between them. If unknown, the cameras are
calibrated to find these values.

(2) One of the images is rotated to bring it to the same
orientation as the other.

(3) Both images are then collectively rotated tomake the
displacement direction completely vertical.

(4) The images are unwarped to the equirectangular
projection to make the epipolar lines vertical.

Figure 4. Rectificationof arbitrarily displaced equirectangular images viamultiple rotations tomake the epipolar lines vertically straight.
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The rectification scheme is shown in Figure 4. This
rectification makes the epipolar lines vertical and makes
it easy to estimate disparity. This rectification is also
important for calculating disparity uncertainty, as now it
can be calculated along straight epipolar lines. We apply
this rectification to both image pairs,C andR, andU and
C. Image C, which is common to both pairs, takes two
different orientations for each pair.

Once the vertical rectification is performed, the epipo-
lar lines are formed vertically for each pair of rectified
cameras. Now, disparity can be estimated using methods
that are applicable to perspective camera stereo images.
Our proposed method focuses on obtaining the best
geometric estimate of depth, per-pixel, given a partic-
ular disparity estimate and its uncertainty. While our
proposed method is applicable to any disparity esti-
mation method, the choice of the disparity estimation
method is important. Considering this, we chose to use
Deepflow [14].

3.4. Initial depth estimation

Our proposed optimization (explained in Section 3.5)
requires an initial value of depth for each pixel in Image
C, which is taken to be the base image and the origin of
the coordinate system. In order to do that, we calculate
depth values from both binocular pairs, C and R, and U

and C.
In Section 3.3, both pairs were rectified and dispar-

ity was estimated. In this subsection, we triangulate the
depth of each pixel in image C using both pairs to obtain
distances dCR and dUC. The triangulation is done in the
same manner as in [11, 13]. Both dCR and dUC are calcu-
lated from the point-of-view of Camera C.

As a result, each pixel in image C has two different
estimates of depth: dCR and dUC. As an initial guess, we
simply take the average of dCR and dUC and call it davg .
We call this the ‘unoptimized’ depth value and this forms

Figure 5. In order to estimate disparity, it is important to have
texture perpendicular to the epipolar lines. In case of (a), texture
is present but it is along the epipolar line, making it difficult to
estimate disparity.

a baseline for how much the performance improves after
optimization. In the next section, we come to the main
contribution of our work, i.e. the geometric optimization
considering uncertainty.

3.5. Geometric optimization considering
uncertainty

In Section 3.4, initial depth for every pixel in image C

was estimated after rectification and disparity estima-
tion. However, every pixel in C has two different depth
values from the two binocular systems. In this chapter,
we attempt to obtain the best, geometrically consistent
estimate of depth for every pixel in C.

3.5.1. Overview
Li [3] calculated the final depth using a weighted aver-
age of both depth values obtained for the central image
(Image C, in our case). However, this violates the fun-
damental principle of camera-based 3D reconstruction –
that every 3D pixel, when projected on an image, must
coincide with the pixel it came from. Due to noise and
incorrect disparity estimation, this is not strictly true.
However, it can be said that the best guess of the cor-
rect position of each 3D point is that which minimizes
the error between the projected 3D point and the pixel

Figure 6. Calculation of Sobel filters in the horizontal direction of
a rectified equirectangular image. The example is taken from one
of the experiments in Section 4.

Figure 7. A virtual environment consisting of a classroom scene
was chosen as our simulated experiment.
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from which it came. We apply this principle to estimate
the correct depth of each pixel. Further, we apply the
geometric constraint that each 3D point should occupy
only one position in 3D space. We decide to reproject
each 3D point from image C to the other two images –
R and U, and minimize the distances to the estimates
of the pixel positions obtained from disparity. This is
possible because the corresponding position of each pixel
in image C is known in image R and image U due to

the disparity calculated in Section 3.3. The corresponding
positions are found by going back to the rectified images
and displacing the pixel by the disparity values in each
image.

Thus, for each pixel û in Image C, we pose the Geo-
metric optimization as follows:

(1) With the current depth estimate d of the pixel û, we
obtain the 3D point P

Figure 8. Images captured in the simulated environment. (a) ImageU, (b) ImageC and (c) ImageR.

Figure 9. The real environment chosen for experiments. (a) Experimental environment and (b) Ricoh Theta Z1.
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(2) We reproject P to Image R and Image U and
obtain the reprojected image points p̂R and p̂U ,
respectively.

(3) Using the disparity values calculated in Section 3.4
we back-calculate the rectification and find its
ideal position in Image R and Image U as ûR
and ûU .

(4) The best depth estimate d of pixel û is the one that
minimizes the distance between ûR and p̂R, and ûU
and p̂U , respectively. This is found by minimization.

The minimization in (4) should take into consid-
eration the disparity uncertainty of each pixel. This is
described next.

3.5.2. Calculation of uncertainty and posing the
optimization problem
In order to maximize accuracy, we take disparity uncer-
tainty into account. Disparity uncertainty arises due to
incorrect estimation of disparity. This is dependant on
several factors such as the presence of texture, light-
ing condition differences between the two images, image
noise, etc. The most important of these is the presence of
image textures. Most disparity estimation methods cal-
culate disparity by comparing local image information
along epipolar lines. Textureless regions have very little

information, making them uncertain to match. However,
the presence of textures is not enough. The textures must
be present in a way to elicit information along epipolar
lines. Since epipolar lines for equirectangular images are
complicated curves as shown in Figure 2, calculating the
texture information is quite difficult.

In order to solve this issue, we use the vertical rectifica-
tion described in Section 3.4. Once the epipolar lines are
rectified to a vertical direction, we check for texture along
them. As shown in Figure 5, texture must be present per-
pendicular to the rectified epipolar line in order to enable
reliable calculation of disparity. We choose to quantify
this uncertainty via a Sobel filter. In the rectified state,
we choose the horizontal direction of the sobel filter as a
measure of the ‘certainty’ of disparity estimation. Figure 6
shows an example of calculating the Sobel filter in rec-
tified state of a 360-degree equirectangular image. Since
there are two rectified states, one for each binocular pair
C–R and U–C, two Sobel filter calculations of Image C

are done.
In this research, we chose to estimate uncertainty in

the rectified state using a Sobel filter. The Sobel filter
can be replaced with any filter that is able to capture
the uncertainty of disparity estimation. The core of our
method is in considering the geometric uncertainty of
disparity estimation in the epipolar direction in order

Figure 10. Images captured in the real environment. (a) Image U, (b) ImageC and (c) ImageR.
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to produce the best possible estimate of distance for
each pixel.

The choice of the filter depends on whether its
response can capture the uncertainty of the disparity
estimation. For Deepflow [14], a Sobel filter that approxi-
mates the local gradient is suitable. This is because Deep-
flow [14] is based on variational optical flow estimation
that penalises gradients and performs optimization in a
coarse-to-fine manner to estimate optical flow. Thus, it
can be said that regions with higher gradients i.e. higher
Sobel filter responses are estimated with higher accuracy.

Previously, we described the optimization to estimate
the correct depth d for each pixel û in Image C as a mini-
mization between the reprojected points p̂R, p̂U , and the
corresponding points obtained by disparity ûR, ûU . We

Figure 11. Results of 3D reconstruction in the simulated environ-
ment. (a) Groundtruth, (b) Unoptimized result and (c) Result of the
proposed method.

consider the Sobel filter response in the rectified state as
ameasure of ‘certainty’ of disparity estimation. Hence, we
weigh the optimization of each pixel with the Sobel filter
responses ωCR and ωCU .

Moreover, in order to calculate the correct distances
between p̂R, p̂U , and ûR, ûU , it is important to consider
the fact that they are unit vector pixels on the surface of
a sphere. They do not move in Euclidian space, but on a
spherical Riemannian manifold of unit radius. Thus, the
actual distance between them should be be calculated as
the ‘geodesic’ distance i.e. the distance along the surface
of the sphere.

Thus, considering the disparity uncertainty and
the geodesic distance along with sphere, the final
optimization problem to obtain the ideal depth d(û) of

Figure 12. Results of 3D reconstruction in the simulated environ-
ment: top view. (a) Groundtruth, (b) Unoptimized result and (c)
Result of the proposed method.
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pixel û in C is a minimization of the reprojection error,
posed as,

d(û) = argmin
∀(û)

( ωCR(ûR − p̂R)
2 + ωUR(ûU − p̂U)2).

(1)
This minimizes the reprojection error between the

calculated pixels and reprojected pixels of Image C on
images R and U, each weighted by the certainty of dis-
parity estimation. The more certain disparity pair will be
given importance over the other. The value of d at the
end of theminimization is taken to be the best depth esti-
mate of pixel û. The minimization can be done using any
non-linear least squares method. As mentioned earlier,
the initial guess for the optimization is taken to be the
average of the depth values calculated for the binocular
systems C–R and U–C, i.e. the ‘unoptimized’ state.

Figure 13. Results of 3D reconstruction in the simulated environ-
ment: side view. (a) Groundtruth, (b) Unoptimized result and (c)
Result of the proposed method.

4. Experimental evaluation

4.1. Experimental conditions

In order to evaluate the performance of our proposed
method, we conducted experiments in a simulated and
a real environment. The method used for disparity esti-
mation was [14], a deep-learning based optical flow esti-
mation method. The algorithm used for the non-linear
least-squares optimizationwas the Levenberg-Marquardt
[15] method. In order to illustrate the increase in accu-
racy when considering epipolar and geometric uncer-
taintywhenusing 3D information obtained fromall three
views, we compared our method with the unweighted
average method in [3], i.e. the ‘unoptimized’ state of
the depth calculation from both 360-degree images.
In addition, to illustrate the differences with learning-
based monocular depth estimation methods, we also
performed qualitative comparison with Pano3D [10].

4.1.1. Simulated environment
The simulated environment was used for the reason that
it is difficult to estimate accurate all-round depth in a real
environment. A simulated environment provides accu-
rate groundtruth and allows for quantitative testing. The
simulated environment was created using Blender [16],
an open-source 3DCG software commonly used for CG
production in animation and movies. A virtual ‘class-
room’ environment was created and realistic 360-degree
trinocular imageswere rendered at a resolution of 5000 ×
2500 pixels and processed using the proposed method.
Except for the image capture, all processing was done
exactly the way it was on real, captured images. The
cameras were 0.4m apart in an L-shaped orientation as
described in the proposed method. The environment is
shown in Figure 7 and the captured images are shown in
Figure 8.

4.1.2. Real environment
For real-experiments, we chose an experimental room
in the university with a lot of clutter. The Ricoh Theta
Z1 Spherical camera was used to capture the envi-
ronment from known camera positions. The baseline
was the same as that of the simulated environment at
0.4 m. The image resolution used was the full reso-
lution of the camera at 6720 × 3360 pixels. The cap-
ture was actually done using a single camera which
was moved to the other two positions after the first
capture. All three camera positions are at the same
height, forming a horizontal ‘L’ shape in the room. The
environment and the camera are shown in Figure 9
and the captured images are shown in Figure 10. Since
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Figure 14. Results of 3D reconstruction in the simulated environment: inside view. (a) Unoptimized result and (b) Result of the proposed
method.

groundtruth information was not available, only qualita-
tive comparisons to the baseline ‘unoptimized’ state are
shown.

4.2. Experimental results and discussions

4.2.1. Simulated environment
The results of 3D reconstruction are shown in Figure 11.
The groundtruth, unoptimized state, and the results of
the proposed method are shown in order. Figures 12–14
show the results from the top and side views of the class-
room, respectively. It can be seen that the overall shape
of the classroom is well reconstructed by all methods, but
the result in the unoptimized state has many outliers and
distortion in the epipolar region, both inside and outside
indicating a significantly degraded reconstruction. Par-
ticularly, distortion can be seen from the inside view of

the room in Figures 14 and 15. Meanwhile, the results of
the proposedmethod show significantly reduced outliers.

Error maps of the results of the proposed method
are shown in Figure 17, ranging from 0 percent (green)
and 10 percent (red). The number of outliers and mean
absolute errors are shown in Figure 16.We judged an out-
lier to be an error of more than 10 m. The number of
outliers reduced from 2109 to just 84 in the proposed
method. All of them were in the epipolar directions.
The mean absolute errors reduced overall from 0.0545 m
to 0.0449 m. In the epipolar direction (taken within a
range of 30 degrees from the epipolar direction) the
mean absolute error reduced from 0.0806 m to 0.0529 m,
representing a reduction of approximately 34.3 percent.
A reduction in both, the number of outliers and the
mean absolute error indicates that the proposed method
worked well.
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Figure 15. Results of 3D reconstruction in the simulated environment: another inside view. (a) Unoptimized result and (b) Result of the
proposed method.

Figure 16. Reduction in the number of outliers and mean aver-
age error.

An important factor in the measurement is the base-
line length. In this experiment, the maximum distance
from the camera to the wall was around 6 m. Therefore,
we decided that a baseline of 0.4 m was optimal. This is

based on the calculation that a resolution of 5000 × 2500
pixels would yield a the measurable distance of a maxi-
mum of 500 m, at which point the disparity would be 1
pixel. Therefore, we excluded points with a measurement
distance of 500 m or more from the accuracy evaluation.

However, some remaining problems included round-
ing at the corners of the classroom and at the intersec-
tions of walls and other planes. This is probably due to
degraded optical flow in presence of textureless disconti-
nuities, i.e. a lack of textures in both epipolar directions.

4.2.2. Real environment
Figures 18–20 show the results of restoring a room using
images taken by the Ricoh Theta Z1. It can be seen that
several errors occur in the area close to the epipolar line.
The proposed method greatly reduced the number of
outliers and improved accuracy, but the distortion in the
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Figure 17. Error maps of the 3D Reconstruction result ranging
from 0 percent (in green) to 10 percent (in red). Some errors
remain near the lights and pillars due to difficult of disparity esti-
mation in the presence of sharp discontinuities. (a) Error map and
(b) Error map (top view).

Figure 18. Results in the real environment. (a) Unoptimized
result showing outliers and (b) Results of the proposed method.

Figure 19. Results in the real environment (top view). (a) Unop-
timized result showing outliers (top view) and (b) Results of the
proposed method (top view).

Figure 20. Results in the real environment (view from inside). (a)
Unoptimized result showing outliers (view from inside) and (b)
Results of the proposed method (view from inside).
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corners of the room indicated by the arrows was a little
larger after optimization. The shape of the room cannot
be seen clearly at several areas due to the fact that there
was a lot of clutter in the roomand the reconstructionwas
conducted from the inside. In Figure 20, it can be seen
that outliers were observed in the interior of the room
in the unoptimized state and they were removed using
the proposedmethod. Inspite of the clutter, our proposed
method was able to recover the shape of the room from
the inside.

4.2.3. Comparison with learning-basedmonocular
depth estimation
In order to justify the focus on geometry based methods,
we also compared the results of our proposed method
to those obtained from Pano3D [10] in both simulated
and real environments. The results are shown Figures 21
and 22. It can be seen that in both the real and the simu-
lated environment, Pano3D [10] was unable to preserve
the geometric details of the room, as predicted. The over-
all shape was distorted as compared to our proposed
method.

Figure 21. Comparison with Learning-based Monocular Depth
Estimation Method Pano3D [10] in the simulated environment.
(a) Results of Learning-based Monocular Depth Estimation by
Pano3D [10] in the simulated environment (top view). The results
show lack of detail and uneven shape preservation and (b) Results
of the proposed method in the simulated environment, showing
preservation of detail and shape (top view).

Figure 22. Comparison with Learning-based Monocular Depth
Estimation Method Pano3D [10] in the real environment. (a)
Results of Learning-based Monocular Depth Estimation by
Pano3D [10] in the simulated environment (top view). The results
show lack of detail and uneven shape preservation and (b) Results
of the proposed method in the simulated environment, showing
preservation of detail and shape (top view).

5. Conclusion and future work

In this research, we proposed a method for accurate,
all-round 3D reconstruction via trinocular 360-degree
cameras, considering uncertainty in a geometric opti-
mization to maximize accuracy. The proposed method
estimated the disparity uncertainty and applied the con-
straint that each reconstructed point should be projected
in all images at geometrically consisted positions. This
was effective in reducing outliers and distortion in the
epipolar directions and minimizing the mean absolute
error ofmeasurement, as shown in quantitative and qual-
itative evaluation experiments.

In future, we will consider several directions for
improving the results. The consistency of the RGB infor-
mation of the pixels can also be considered. Moreover,
it would also be effective to consider the information
of multiple pixels instead of comparing one pixel at a
time. Moreover, a trinocular setup can also be used to
find intersecting epipolar lines and improve the disparity
estimation itself.
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